
1.  Introduction
Large climatic changes observed in the Arctic in recent decades have made prediction of Arctic sea ice on monthly 
to seasonal timescales increasingly relevant (Jung et al., 2016). Younger, thinner ice in the Arctic (e.g., R. Lindsay 
& Schweiger, 2015; Maslanik et al., 2007) has allowed for new shipping routes (e.g., Smith & Stephenson, 2013) 
and a growing prevalence of industrial and tourist (Hall & Saarinen, 2010) activities in the region. Furthermore, 
fast changing sea-ice conditions present hazards for local communities as conditions become increasingly chal-
lenging to anticipate and predict (Eicken, 2013).

Arctic sea ice has been shown to contain inherent predictability with persistence of sea-ice concentration (SIC) 
up to 5 months (Blanchard-Wrigglesworth, Armour, et al., 2011; Lemke et al., 1980; R. W. Lindsay et al., 2008), 
and strong area–thickness coupling provides predictability for even longer timescales (Blanchard-Wrigglesworth, 
Bitz, et al., 2011). Blanchard-Wrigglesworth and Bushuk (2019) find that predictability in models is likely robust 
within a constant climate mean state, but these relationships might not be stationary in a warming climate (Bonan 
& Blanchard-Wrigglesworth, 2020; Holland & Stroeve, 2011; Holland et al., 2019). Beyond persistence, other 
major contributors to Arctic sea-ice predictability include dynamical advection of sea-ice anomalies by mean 
Arctic circulation patterns (Guemas et al., 2016), atmospheric temperature variability (Olonscheck et al., 2019), 
and ocean heat flux (Bitz et al., 2005; Bushuk et al., 2019; Yeager et al., 2015).

There has been a growing effort to predict Arctic sea ice on subseasonal to seasonal timescales, and the Sea 
Ice Outlook (SIO, Stroeve et al., 2014) represents a substantial sea-ice-research community effort to develop 
and improve Arctic sea-ice prediction. Starting in 2008, the SIO has accepted forecasts of September sea-ice 
conditions from groups around the world, and though much progress has been made, there remains consider-
able room for improvement. Stroeve et al.  (2014) evaluated the skill of SIO forecasts from 2008 to 2013 and 
found that, overall, the skill, regardless of method, was generally poor when sea-ice conditions depart from 
the long-term trend. Moreover, statistical models tend to outperform dynamical models (Stroeve et al., 2014) 
likely due in part to uncertainty in model physics (Blanchard-Wrigglesworth et al., 2015) and initial conditions 
(Blanchard-Wrigglesworth et al., 2017).
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Plain Language Summary  Rapid changes in sea-ice concentration in recent decades have produced 
new navigational challenges and hazards in the region, elevating the importance of seasonal sea-ice forecasts. 
Arctic sea ice has been shown to contain inherent predictability on seasonal timescales, yet current predictions 
generally show poor skill. Here, we employ a statistical technique referred to as Linear Inverse Modeling, which 
uses linearized dynamical modes estimated from a training data set to predict sea-ice conditions on monthly 
timescales. We find a Linear Inverse Model is able to outperform a baseline statistical model throughout the 
Arctic when initialized on the data derived from the same model.

BRENNAN ET AL.

© 2023. The Authors.
This is an open access article under 
the terms of the Creative Commons 
Attribution License, which permits use, 
distribution and reproduction in any 
medium, provided the original work is 
properly cited.

Monthly Arctic Sea-Ice Prediction With a Linear Inverse 
Model
M. Kathleen Brennan1  , Gregory J. Hakim1, and Edward Blanchard-Wrigglesworth1 

1Department of Atmospheric Sciences, University of Washington, Seattle, WA, USA

Key Points:
•	 �A Linear Inverse Model is evaluated 

using last millennium model 
simulations for Arctic climate 
prediction

•	 �The Linear Inverse Model successfully 
predicts Arctic conditions when the 
same model simulation is used for 
training and validation

•	 �Linear Inverse Model forecast skill is 
proportional to the spatial correlation 
of variance in the validation and 
training data

Supporting Information:
Supporting Information may be found in 
the online version of this article.

Correspondence to:
M. K. Brennan,
mkb22@uw.edu

Citation:
Brennan, M. K., Hakim, G. J., & 
Blanchard-Wrigglesworth, E. (2023). 
Monthly Arctic sea-ice prediction with 
a Linear Inverse Model. Geophysical 
Research Letters, 50, e2022GL101656. 
https://doi.org/10.1029/2022GL101656

Received 25 OCT 2022
Accepted 13 FEB 2023

10.1029/2022GL101656
RESEARCH LETTER

1 of 10

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0001-9097-4383
https://orcid.org/0000-0002-2608-0868
https://doi.org/10.1029/2022GL101656
https://doi.org/10.1029/2022GL101656
https://doi.org/10.1029/2022GL101656
https://doi.org/10.1029/2022GL101656


Geophysical Research Letters

BRENNAN ET AL.

10.1029/2022GL101656

2 of 10

Most statistical, data intensive, approaches for predicting Arctic sea ice involve predicting pan-Arctic or 
regional quantities using linear regression techniques (e.g., Drobot et al., 2006; R. W. Lindsay et al., 2008; Petty 
et al., 2017; Tivy et al., 2007). R. W. Lindsay et al. (2008) combine observed atmospheric indices and sea-ice 
coverage with ocean and ice thickness fields derived from Pan-Arctic Ice-Ocean Modeling and Assimilation 
System (PIOMAS) in order to develop an empirical linear model. They find substantially more skill than previous 
linear regression approaches that include only SIC and atmospheric variables (Drobot et al., 2006). More recently, 
other data-driven techniques have been applied to Arctic sea-ice prediction on seasonal timescales. For example, 
Andersson et al. (2021) use convolutional neural networks trained on both climate model and observational data 
to predict 6 months of SIC fields that are able to outperform a dynamical model for seasonal forecasts. Hogg 
et al. (2020) apply a Koopman Mode Decomposition to satellite observations of SIC to make future predictions 
of SIC in both hemispheres.

Here, we employ a Linear Inverse Model (LIM) to predict Arctic sea ice on monthly timescales. A LIM is 
ideal for this application as it uses linearized dynamical modes estimated from a training data set, harnessing 
the main contributors to Arctic predictability. The LIM framework assumes stationary statistics and that fluc-
tuations about a mean state can be modeled by linear dynamics plus stochastic noise. Yuan et al. (2016) used 
a linear Markov model trained on sea-ice, oceanic, and atmospheric variables from reanalysis data to predict 
Arctic SIC on monthly timescales, similar to the LIM approach here; however, they did not detrend the data and 
only use 35 years (1979–2013) for training and validation. LIMs have become a useful tool for predicting and 
probing the dynamics of the tropical atmospheric and oceanic variables on seasonal timescales (e.g., Alexander 
et al., 2008; Cavanaugh et al., 2015; Dias et al., 2019; Henderson et al., 2020; Huddart et al., 2017; Newman 
et  al.,  2009; Penland,  1996; Penland & Matrosova,  1998; Penland & Sardeshmukh,  1995; Shin et  al.,  2021; 
Winkler et al., 2001). Perkins and Hakim (2020) built a multivariate LIM for forecasting global climate states on 
annual timescales. We build on this previous work with a focus on predicting Arctic sea-ice and other climate 
fields on monthly timescales.

We focus on answering two main questions: (a) over what time period is a LIM useful for predicting Arctic 
sea-ice and climate conditions on monthly timescales? (b) What conditions are required for the LIM to make 
skillful predictions? To address the first question, in Section 3.1, we use last millennium simulations to train a 
LIM and assess the sample size needed for robust estimates of LIM skill. Given the absence of strong external 
forcing during the last millennium, and large availability of data, we are able to optimize the parameters of the 
LIM for predicting Arctic sea-ice coverage and assess its skill. We then address the second question in Section 3.2 
by initializing the LIM with data from different model simulations and reanalysis data and find that the LIM fails 
to beat an autoregressive model of order one (AR1) forecast due to differences in the sea ice from the training 
data. We present a metric for predicting when the stationary statistics assumed for the LIM are not satisfied.

2.  Methods
2.1.  Linear Inverse Modeling

An LIM is an empirically determined linearization of a statistically stationary dynamical system about its mean 
state (Penland, 1996; Penland & Matrosova, 1994; Penland & Sardeshmukh, 1995). The tendency of a multivar-
iate state vector x can be represented as

𝑑𝑑𝐱𝐱

𝑑𝑑𝑑𝑑
= 𝐋𝐋𝐋𝐋 + 𝜁𝜁� (1)

(Equation 2 in Penland & Sardeshmukh, 1995). Here, L is the deterministic dynamical operator that propagates 
the state in time and ζ represents the unpredictable dynamics as uncorrelated white noise forcing in time with 
state–space correlations. Integrating Equation 1 with respect to time gives the forecast from time t to t + τ,

𝐱𝐱(𝑡𝑡 + 𝜏𝜏) = exp(𝐋𝐋𝜏𝜏)𝐱𝐱(𝑡𝑡) + 𝐧𝐧.� (2)

Here, n is a random error vector from the integration of the white noise (ζ). Since L is a matrix, it has an eigen-
value decomposition such that Lum = λmum, where um are the eigenmodes of L and λm are the corresponding 
eigenvalues. Stationary statistics require that the eigenmodes of L (um) are all damped (eigenvalues have negative 
real parts). Since the eigenmodes are not orthogonal, interference results in transient growth despite the decay of 
each eigenmode (e.g., Farrell, 1982).
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We use standard inverse methods to determine L empirically as described in Penland (1989) by defining a matrix 
Gτ = exp(Lτ), which is determined through τ-lag covariances,

𝐆𝐆𝜏𝜏 = 𝐂𝐂𝜏𝜏𝐂𝐂
−1

𝑜𝑜 .� (3)

Here, Cτ = 〈x(t + τ)x T(t)〉 represents the sample covariance of x for a time lag of τ and Co = 〈x(0)x T(0)〉. Assum-
ing that the state and the error are uncorrelated, we can use Equation 2 to propagate the state covariance:

cov(𝐱𝐱(𝑡𝑡 + 𝜏𝜏), 𝐱𝐱(𝑡𝑡 + 𝜏𝜏)) = 𝐆𝐆𝜏𝜏cov(𝐱𝐱(𝑡𝑡), 𝐱𝐱(𝑡𝑡))𝐆𝐆
𝑇𝑇
𝜏𝜏 + 𝐍𝐍𝜏𝜏 .� (4)

From Equations 3 and 4 we also have

𝐍𝐍𝜏𝜏 = 𝐂𝐂𝑜𝑜 −𝐆𝐆𝜏𝜏𝐂𝐂𝑜𝑜𝐆𝐆
𝑇𝑇
𝜏𝜏 .� (5)

Given Gτ and Nτ, we solve for the state x at time τ using Equation 2 and the covariance using Equation 4. Note 
that when validating the LIM mean forecast, we take the expectation of Equation 2, and the noise term vanishes.

2.2.  LIM Training Procedure

As mentioned in Section 2.1, the LIM operator L is assumed to be stationary about a mean value, and damped 
(it has negative eigenvalues), so we linearly detrend the training data and remove the climatological mean for 
each variable. Given that the trend in time is different across the seasonal cycle (particularly for Arctic sea-ice 
variables, e.g., Serreze et al., 2007), we remove the linear trend and mean for each month individually at each grid 
point. We limit the domain to north of 40°N in order to optimize for Arctic prediction.

Given the large number of degrees of freedom in the state vector, we truncate the state using an area-weighted 
empirical orthogonal function (EOF) decomposition before calculating the lagged covariance. The leading 50 
EOFs for each variable are retained and the resulting state projection normalized by the square-root of the total 
temporal variance such that the sum of the variance over the truncated state for each variable sums to 1. Once 
truncated and normalized, all LIM variables are stacked in a matrix:

𝐱𝐱 =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

𝐱𝐱𝑇𝑇𝑇𝑇𝑇𝑇

𝐱𝐱𝑃𝑃𝑃𝑃𝑃𝑃

. . .

𝐱𝐱𝑆𝑆𝑆𝑆𝑆𝑆

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

.� (6)

With this truncated state, we determine Gτ using Equation 4 for τ = 1 month.

Arctic sea-ice coverage exhibits a large seasonal cycle; thus, we anticipate the need to potentially build a LIM for 
different months separately. To investigate this, we train LIMs for single-month transitions (e.g., forecasting only 
February from January) as well as LIMs trained on all months (with seasonal cycle and trends removed). We find 
that single-month LIMs are prone to have positive eigenvalues for L, indicating that the stationary assumptions 
of the LIM are not met. We hypothesize that this is due to a change in the location of variability for sea ice as the 
location of the sea-ice edge changes; that is, the statistics are not stationary. In order for the LIM to produce anom-
alies in a future month for locations where there is not much variability in the initial month, positive eigenvalues 
result. As a result, we use the all-month LIMs for the rest of the paper.

We perform both in- and out-of-sample validation, which refer to the time period used for validation relative to 
the training period. For in-sample validation, the time period used for validation is also used to train the LIM, and 
for out-of-sample validation, the validation time period is not used in training. We will use intramodel validation 
to indicate when data originating from the same model run is used for both training and validation of the LIM and 
cross-model validation to indicate when the LIM is trained and initialized using data originating from different 
model simulations and reanalysis data.

2.3.  Data Sources

For training the LIM, we use monthly averaged data from the Community Earth System Model version 1 (CESM1) 
Last Millennium Ensemble (LME, Otto-Bliesner et al., 2016). We train and validate our LIM on a single ensemble 
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member spanning years 850–1850 CE. Model fields used to test their affect on LIM forecast skill are: 2-m air 
temperature (TAS), sea level pressure (PSL), 500  hPa geopotential height (ZG500), sea surface temperature 
(SST), sea-ice thickness (SIT), and SIC. These variables were selected because they have all been associated with 
sea-ice variability, and we hypothesize that including each of these variables may contribute positively to the 
LIM’s ability to predict SIC. Specifically, Arctic sea ice has been shown to exhibit strong coupling with surface 
air temperature, particularly on longer timescales (e.g., Armour et al., 2011; Gregory et al., 2002; Mahlstein & 
Knutti, 2012; Olonscheck et al., 2019). PSL is associated with surface winds that can drive sea-ice motion and 
variability (e.g., Rigor et al., 2002) and, similarly, ZG500 is associated with the large-scale dynamical state of 
the atmosphere which can also contribute to sea-ice variability. Furthermore, persistence in SIC is strongly influ-
enced by both SSTs and SIT (e.g., Blanchard-Wrigglesworth, Armour, et al., 2011; Bushuk et al., 2015).

We also initialize and train the LIM using other models and data products simulating various time periods in 
order to test the sensitivity of the LIM to different mean states and covariance structures across variables. During 
the last millennium, we use monthly averaged data from both the Community Climate System Model version 4 
(CCSM4, Landrum et al., 2013) and Max Planck Institute (MPI) for meteorology last millennium simulations 
(Jungclaus et al., 2012), which were run from 850 to 1850 CE. Both of these simulations are part of the Coupled 
Model Intercomparison Project, phase 5 (Taylor et al., 2012), Paleoclimate Modeling Intercomparison Project 
phase 3. During the historical period, we use monthly averaged data from the Coupled Model Intercomparison 
Project, phase 6 (CMIP6, Eyring et al., 2016) Community Earth System Model version 2 (CESM2, Danabasoglu 
et al., 2020), MPI Earth System Model version 1.2 (low resolution [Mauritsen et al., 2019]), and Geophysical 
Fluid Dynamics Laboratory Earth System Model version 4.1 (GFDL, Dunne et al., 2020) simulations, which were 
run from 1850 to 2014 CE. We also validate the LIM using the European Center for Medium-Range Weather 
Forecasts reanalysis product (ERA5, Hersbach et al., 2020), which spans 1979–2020 CE (ERA5 does not include 
a SIT variable). For simulations of the future, we use one ensemble member from the CESM1 Large Ensemble 
(Kay et al., 2015) which simulates 1920–2100 CE. All variables from all sources are regridded onto the native 
ocean and atmosphere grids from the CESM1 LME simulations.

2.4.  Skill Metrics

To validate our predictions, we use the squared correlation coefficient (R 2 value), coefficient of efficiency (CE), 
and root mean squared error (RMSE). As defined below, the correlation coefficient (R) measures relative phasing 
of two time series.

𝑅𝑅 =

∑𝑛𝑛

𝑖𝑖=1
(𝑥𝑥𝑖𝑖 − 𝑥̄𝑥)(𝑣𝑣𝑖𝑖 − 𝑣̄𝑣)

√∑𝑛𝑛

𝑖𝑖
(𝑥𝑥𝑖𝑖 − 𝑥̄𝑥)

2

√∑𝑛𝑛

𝑖𝑖
(𝑣𝑣𝑖𝑖 − 𝑣̄𝑣)

2

.� (7)

Here, v is the verification data and x is the state being evaluated (the forecasted value). The square of R describes 
the percentage of the variance in v that is linearly explained by x. The CE (Nash & Sutcliffe, 1970), like the 
correlation coefficient, not only measures the relative phasing of two data sets but also includes bias in the mean 
and variance:

𝐶𝐶𝐶𝐶 = 1 −

∑𝑛𝑛

𝑖𝑖
(𝑣𝑣𝑖𝑖 − 𝑥𝑥𝑖𝑖)

2

∑𝑛𝑛

𝑖𝑖
(𝑣𝑣𝑖𝑖 − 𝑣̄𝑣)

2
.� (8)

CE has an upper bound of one if the time series are identical and is unbounded in the negative direction. A CE 
value of zero occurs when the sum of squared errors is equal to the variance in the verification data (a climato-
logical forecast, where 𝐴𝐴 𝐴𝐴𝑖𝑖 = 𝑣̄𝑣 , would result in a CE of zero), and negative CE values result from a bias between 
the two data sets, either in the mean or amplitude of the variability.

To assess the pan-Arctic skill of SIC, which is reported as the percentage of a grid cell covered in sea ice, we use 
total Arctic RMSE. For forecasts of other quantities such as SIT, we use Arctic mean RMSE. To calculate the 
RMSE we use,

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =

√∑𝑛𝑛

𝑖𝑖
(𝑥𝑥𝑖𝑖 − 𝑣𝑣𝑖𝑖)

2

𝑛𝑛
,� (9)
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where i represents a given forecast, v is the verification data, and x is the forecast being evaluated. The RMSE is 
calculated for each grid cell. For SIC, the RMSE is multiplied by the grid cell area and the sum is taken across the 
ocean domain (north of 40°N, land not included), which we refer to as total Arctic RMSE. For other variables, 
the area-weighted Arctic mean RMSE is taken across the Arctic (north of 40°N), which we refer to at the Arctic 
mean RMSE. LIM forecasts are projected back from EOF space and compared with the verification data (not 
truncated) in latitude–longitude space.

3.  Results
Given that the LIM assumes stationary statistics, we expect the LIM to produce skillful forecasts during the last 
millennium when there is less anthropogenic forcing than the Instrumental Era or future projections. We antic-
ipate that the LIM will also perform well for intramodel validation given that the covariances in the LIM match 
those in the target state. In Section 3.1, we will use intramodel experiments to optimize the LIM parameters, and 
in Section 3.2, we will use cross-model validation to quantify under what time periods the LIM produces skillful 
forecasts. Forecasts from an AR1 model, trained on the EOF truncated data, serve as a baseline reference for 
comparison with the LIM forecasts. Here, an AR1 forecast (W) for a given month t is defined as Wt = α1Wt−1, 
where α1 is the 1 month lag correlation of the system.

3.1.  LIM Optimization and Intramodel Performance

To start, we train and validate the LIM during the last millennium using intramodel validation with a CESM1 
LME simulation, which provides ample data to test the sensitivity of the LIM to various parameters. In particular, 
we test the sensitivity of LIM performance to the following parameters: number of training and validation years, 
number of EOFs included in the truncation, and variables included in training.

To investigate the number of training and validation years necessary for converged LIM performance metrics, we 
perform two experiments. First, we fix the training period from 850 to 1650 CE (800 years) and vary the number 
of validation years from 10 to 200 years segments between 1651 and 1850 CE. All possible nonoverlapping vali-
dation segments of each length are used. Next, we fix the validation period from 1751 to 1850 CE (100 years) 
and vary the number of training years ranging from 100 to 900 years for all possible nonoverlapping segments 
between 850 and 1750 CE. For 1 month forecasts, the LIM total Arctic RMSE asymptotes at large sample size 
to 1.5 × 10 6 km 2 as compared to 1.6 × 10 6 km 2 for the AR1 forecasts (Figure S1 in Supporting Information S1). 
This indicates that more than 500 years of monthly training data and 100 years of validation data are needed to 
produce reliable skill metrics. For the remaining experiments, we will train the LIM between 850 and 1650 CE 
unless otherwise noted.

Next, we vary the number of EOFs included in the truncation during the training procedure (Section 2.4) from 5 
to 250 for each variable and perform both in-sample (851–1050 CE) and out-of-sample (1651–1850 CE) valida-
tion. The percent of variance explained as a function of the number of EOFs retained for each of the six variables 
in the CESM1 LME simulation data is shown in Figure S2 in Supporting Information S1. For all experiments, and 
10 or more EOFs for each variable, the LIM out-of-sample forecasts outperform an AR1 forecast for lead times 
up to around 5–6 months (not shown). While LIM forecast skill decreases monotonically in number of EOFs for 
the in-sample experiments, skill for the out-of-sample experiments levels off around 40–80 EOFs depending on 
lead time (Figure S3 in Supporting Information S1). This indicates overfitting for larger numbers of EOFs, and to 
avoid that we truncate all subsequent experiments to 50 EOFs per variable.

We now investigate how including different variables contribute to LIM predictability of Arctic SIC at differ-
ent lead times. We consider the role of atmospheric (TAS, PSL, and ZG500), oceanic (SST), and SIT on SIC 
predictions. Nine different LIMs are trained using: only SIC, SIC plus TAS, SIC plus PSL, SIC plus ZG500, 
SIC plus SST, SIC plus SIT, SIC plus SST plus SIT, SIC plus TAS plus SST plus SIT, and a LIM trained using 
all six variables. For each LIM, we use 800 training years (851–1650 CE), 200 validation years (1651–1850 
CE), and truncate to 50 EOFs per variable. Moreover, we evaluate LIM performance relative to a LIM trained 
on SIC alone (Figure 1). Most of the SIC forecast skill comes from SST and SIT variables (dark blue dashed 
line in Figure 1), as well as TAS (purple dashed line in Figure 1); however, all variables contribute favorably to 
forecast skill of SIC. TAS and SST contribute the most to SIC forecast skill on 1–3 months lead times, while 
SIT along with TAS and SST contribute the largest skill increase on 4–6 months lead times. PSL and ZG500 
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show very similar contributions to the forecast skill in SIC at all lead times, though adding both variables 
increases forecast performance more than adding either variable individually (not shown). Given these results, 
we include all six variables in LIM training except when validating on reanalysis data, which does not include 
SIT.

Performance of the LIM during out-of-sample validation involves training on all months between 850 and 1650 
CE and validation between 1651 and 1850 CE using the CESM1 LME simulation. The LIM shows skill above an 
AR1 forecast for all variables at 1 month lead times (Figure S4 in Supporting Information S1). For mass fields 
(PSL and ZG500), such skill is short-lived and disappears beyond 2 months lead time. For sea-ice variables (SIT 
and SIC) and TAS, LIM outperforms an AR1 forecast through 8 months lead times and 7 months lead times for 
SST. Generally, the shorter-lived predictability of PSL and ZG500 makes physical sense given the relatively 
short-lived nature of pressure anomalies in the atmosphere relative to SST anomalies, which tend to be more 
persistent. The longer lived predictability of SIT is also consistent with previous work showing that SIT anom-
alies persist across seasons (Balan-Sarojini et al., 2021) and up to a year (Blanchard-Wrigglesworth, Armour, 
et al., 2011).

In terms of the spatial distribution of skill, we find positive CE values everywhere except for small regions 
near the ice edge where sea-ice variability is only present during a small number of months in the valida-
tion data set (Figure S5 in Supporting Information S1). RMSE is generally greatest near the sea-ice edge, 
with largest values near the Fram Strait into the Barents Sea. Figure 2 shows the difference in spatial skill 
of 1-month forecasts between the LIM and AR1 forecasts. The LIM outperforms an AR1 forecast in nearly 
all regions, increasing the correlation and CE value by up to approximately 0.24. RMSE is also reduced 
or remains the same everywhere with a maximum reduction of approximately 3.8%. To place this value 
in context, we note that the maximum mean monthly standard deviation in SIC across all grid cells in the 
CESM1 LME simulation (1850–2005 CE) is approximately 30%. The reduction in RMSE, relative to this 
standard deviation, is highest (0.28 sigma) in the Pacific sector, Hudson Bay, and Kara Sea (see Figure S6 in 
Supporting Information S1).

These intramodel, out-of-sample results indicate that the LIM can not only predict SIC well on seasonal times-
cales, but other important oceanic and atmospheric variables of the Arctic climate state. We have optimized 
the LIM to predict SIC, but it maintains skill in other variables for long lead times (up to 8 months, Figure S4 
in Supporting Information S1). Furthermore, the LIM is able to predict SIC on 1 month lead times throughout 
the Arctic region, showing better skill than an AR1 forecast everywhere. These results indicate that the LIM is 
a useful tool for efficient emulation of coupled model simulations.

Figure 1.  Forecast skill for Arctic sea-ice concentration (SIC) as a function of lead time for nine different Linear Inverse 
Models (LIMs) containing different combinations of variables: only SIC; 2-m air temperature (TAS), sea level pressure 
(PSL), 500 hPa geopotential height (ZG500), sea surface temperature (SST), and sea-ice thickness (SIT) each plus SIC; and 
all variables. Total Arctic root mean squared error (RMSE) is plotted relative to a LIM containing only SIC. Each LIM was 
trained using a CESM1 LME simulation from 850 to 1650 CE and validated between 1651 and 1850 CE.
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3.2.  Cross-Model Validation

To investigate our second research question and determine under what conditions the LIM works well for predict-
ing Arctic sea-ice conditions, we perform cross-model validation. For these experiments, we initialize the LIM 
using data that originate from a different model than the LIM training data (CESM1 LME simulation from 850 
to 1650 CE). Generally, we find that the LIM fails to outperform an AR1 forecast (trained on the same model 
data as the LIM) when initialized with models outside CESM1 and outside the mean state conditions of the last 
millennium. Forecast skill as a function of lead time for the cross-model experiments are shown in Figure S7 in 
Supporting Information S1. For all cross-model validation experiments, the LIM outperforms climatology on 
1 month timescales and up to 4 months when using CESM1 historical simulations. Only experiments performed 
using historical or last millennium simulations from CCSM4 and CESM1 outperform an AR1 forecast (Figure 
S7 in Supporting Information S1).

To summarize and evaluate LIM performance when trained using CESM1 LME and validated using different 
data sets, we compare the variability in the validation data relative to the training data set. Specifically, we calcu-
late the spatial correlation between the training and validation patterns of variability to represent spatial differ-
ences. Figure 3 shows this spatial correlation versus the total Arctic RMSE for different LIM forecasts relative to 

Figure 2.  Squared correlation coefficient, coefficient of efficiency (CE), and root mean squared error (RMSE) difference between 1 month forecasts of Arctic sea-ice 
concentration from a Linear Inverse Model (LIM) and autoregressive model of order one at each grid cell. Both models were trained using a monthly CESM1 LME 
simulation from 850 to 1650 CE and validated between 1651 and 1850 CE.

Figure 3.  Total Arctic root mean squared error (RMSE) for 1 month Linear Inverse Model (LIM) forecasts validated on 
various different model simulations (different colors) versus the spatial correlation between the variance (across time) of each 
validation data set and the LIM training data set. The total Arctic RMSE difference is defined by the LIM forecast minus that 
from autoregressive model of order one (AR1). For all forecasts, the LIM and AR1 models are trained using a CESM1 LME 
simulation from 850 to 1650 CE. Validation periods were chosen as 100 years nonoverlapping segments for last millennium 
simulations (LM) and all 50 years nonoverlapping segments for historical simulations.
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an AR1 forecast of SIC. The vertical axis in Figure 3 (and Figure S7 in Supporting Information S1) indicates that 
the LIM is able to outperform an AR1 forecast when initialized with CCSM4 last millennium simulations (navy 
blue), but not with MPI last millennium simulations (brown). Similarly when initialized with CMIP6 historical 
simulations (1851–2014 CE) from MPI, GFDL, and CESM2 as well as a future scenario from the CESM2 LE, 
the LIM was unable to outperform an AR1 forecast. Finally, we tried to validate the LIM using ERA5 reanalysis 
data from 1980 to 2020 CE and this LIM also failed to outperform an AR1 forecast (SIT not included).

Figure 3 also indicates that, overall, this spatial correlation is a good predictor of LIM performance. Thus, the 
locations of the variability in the training and validation data sets have to be sufficiently colocated in order for 
the LIM to outperform an AR1 forecast. Applying least squares regression to the data shown in Figure 3 yields 
an R 2-value of 0.77. The x-intercept of this best fit line is 0.66, indicating that a spatial correlation between the 
training and validation data variance must exceed that value in order to likely outperform an AR1 forecast. A 
similar analysis was also done for SIT (see Figure S8 in Supporting Information S1) and the x-intercept of the best 
fit line is 0.55 (R 2-value of 0.72). These results confirm that LIMs are most useful when applied to time periods 
exhibiting stationary statistics and that the LIM inherits model biases from the training data set.

4.  Conclusions and Discussion
Overall, we find that a LIM trained using a CESM1 LME simulation performs well as an emulator, yielding 
skillful forecasts of Arctic sea ice and other climate variables to 8 months lead, when validated on data from the 
model used for training, including out-of-sample validation in time. We find that at least 500 years of monthly 
data are needed for training and 100 or more years of monthly validation data to reliably quantify skill. We also 
find that TAS and SST contribute most to Arctic SIC prediction on 1–3 months timescales, while SIT becomes 
more important on 4–6 months timescales.

When validated on out-of-sample intramodel data, the LIM performs well not only for SIC prediction but for all 
of the six variables included. The predictions outperform an AR1 forecast for all variables except for PSL and 
ZG500 for lead times beyond 2 months. This highlights the ability of the LIM to capture a broader picture of the 
Arctic system despite being optimized for predicting sea-ice coverage. The LIM outperforms an AR1 forecast 
throughout the Arctic and shows the most skill in regions near the ice edge with the most variability in SIC.

We test the ability of the LIM to predict conditions when initialized with other last millennium simulations, 
historical simulations, reanalysis data, and a future scenario, although the LIMs produce skillful forecasts to 1–4 
months lead time, none outperform an AR1 forecast (except the CCSM4 last millennium simulation). This result 
is likely due in part to model bias and in part to changes in climate statistics depending on the scenario of interest. 
Previous work has found a large range of persistence estimates across models and a general overestimation of 
persistence in models compared to observations (Blanchard-Wrigglesworth & Bushuk, 2019; Giesse et al., 2021), 
which may contribute to the lack of skill we see during cross-model validation. We find that the spatial correlation 
between the variability (in time) of the training versus validation data can be used as a good predictor (R 2-value of 
0.77) of whether the LIM will outperform an AR1 forecast, with a spatial correlation greater than 0.66 between 
the training and validation needed for LIM forecasts to outperform AR1.

Given this criteria, one can pursue training and validation data sets that best fit a period of interest. If a LIM were 
to be trained for present-day forecasting, more sample training data are needed than are available from satellite 
and reanalysis products. Furthermore, a training data set’s variability would need to correlate well with satel-
lite observations. The training data set we use here, CESM1 LME, has a spatial correlation of 0.57 with  satel-
lite  observations between 1980 and 2015 CE which does not pass the threshold determined here. This value drops 
to 0.42 between 2000 and 2015 CE.

As described here, the LIM is best used as a model emulator as it seems to inherit model biases from the training 
data set. However, given that the LIM can predict a diverse set of variables across the climate system at minimal 
computational cost, it could also be a useful tool for probing coupled model dynamics in the Arctic.

Data Availability Statement
All data used to train and validate models for this work were derived from other sources. CESM1 LME simula-
tions are available through Otto-Bliesner et al. (2016), CCSM4 last millennium simulations through Landrum 
et  al.  (2013), and MPI last millennium simulations from Jungclaus et  al.  (2012). Historical simulations from 
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CESM2 are available through Danabasoglu et  al.  (2020), MPI historical simulations through Mauritsen 
et al. (2019), and GFDL historical simulations from Dunne et al. (2020). ERA5 reanalysis data are available from 
Hersbach et al. (2020) and CESM1 LE simulations through Kay et al. (2015).
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